Irradiated Material Weldability Technical Update

NRC Technical Information Exchange Meeting

Jon Tatman, EPRI-WRTC
Greg Frederick, EPRI-WRTC

Rockville, MD
June 3, 2015
Helium Generation in Reactor Materials

- Helium is generated as a result of irradiation of boron and nickel in reactor internals materials
 - \(^{10}\text{B}(n, \alpha) \rightarrow ^{7}\text{Li} + \text{He} \)
 - Occurs early in the component’s life-cycle until Boron burn up is complete (below \(1 \times 10^{21} \text{n/cm}^2 \ E < 0.5 \text{ eV} \))
 - \(^{58}\text{Ni}(n, \gamma) \rightarrow ^{59}\text{Ni}(n, \alpha) \rightarrow ^{56}\text{Fe} + \text{He} \) (2-step reaction)
 - Continues through the component’s life (involves both fast and thermal neutrons)

- The problem with using thermal fluence as an indicator of weldability of irradiated material
 - Continues through the component’s life (involves both fast and thermal neutrons) - Up to about \(1 \times 10^{21} \text{n/cm}^2 \ (E < 0.5 \text{ eV}) \) Boron controls Helium production
 - Different materials (304, 316L, Ni-alloy and RPV steel) have different Helium concentrations threshold for cracking

Graph: Exposure of SS in the BWR environment

- Current Helium weldability threshold (32 EFPY)
Technology Overview: Why Helium Generation Effects the Weldability of Irradiated Materials

• Key factors contributing to Helium induced cracking (embrittlement) in irradiated materials:
 – **Stage 1**: Generation of helium (life of plant)
 – **Stage 2**: Diffusion of helium into the weld HAZ grain boundaries
 • Occurs when temperatures are in excess of 800°C
 – **Stage 3**: Welding residual tensile stresses occur during the cooling cycle (welding)
Technology Overview: Controlling Grain Boundary Helium Bubble Coalescence During Welding

Key welding factors to control the helium bubble coalescence during welding:

1) Minimize grain boundary helium bubble size by controlling welding heat input and weld thermal cycle (i.e., reduce time above 800°C)

2) Control tensile stress profile during cooling (during maximum helium bubble growth period)

Source: Z. Feng ORNL Report
ASME request for Clarification on Welding Irradiated Material Assessment

• There was a request by the NRC and ASME Section XI to include at definition of a weldability threshold with respect to irradiation to a number of Code Cases

• Most applications of repairs of DMWs have been at locations where the weldability is not affected by irradiation, i.e. RPV nozzles

• The current limitations in 10CFR50.55a state:
 – (b)(2)xii) Underwater Welding. The provisions in IWA-4660, "Underwater Welding," of Section XI, 1997 Addenda through the latest edition and addenda incorporated by reference in paragraph (b)(2) of this section, are not approved for use on irradiated material.
ASME request for Clarification on Welding Irradiated Material Assessment

• Information Required:
 – Technical Basis Report(s):
 • Areas outside of concern of fluence, or numerical limitation of when or where welding can be applied.

• What’s missing
 – Low alloy steel – toughness issue
 – Low alloy steel – bubbles at fusion line
 – Austenitic – helium induced cracking
 – Austenitic – flaw evaluation of cracks (toughness)
Limitations (Wording) in ASME Code

• 5 different recommendations (current)
• If the repair area is to be subjected to………………
 1. fast neutron fluence greater than 10^{19} nvt $E \geq 1$ MeV
 2. thermal neutron ($E < 0.5$ eV) fluence of 1×10^{17} neutrons per cm2
 3. 0.1 APPM15 measured or calculated helium content generated through irradiation.
 4. the neutron fluence in the repair areas shall be taken into account when establishing the weld metal composition limits.
• Newest Words:
 5. consideration shall be given to the effects of irradiation on the properties of material, including weld material for applications in the core belt line region of the reactor vessel. Special material requirements in the Design Specification shall also apply to the test assembly materials for these applications.
Irradiated Material Welding Development: EPRI Key Product History
LTO/WRTC/BWRVIP/MPR – Welding Guideline and Technology Products

2) **2011 (BWRVIP)** – Guidelines for Performing Weld Repairs to Irradiated BWR Internals (BWRVIP-97-A) – EPRI Report 1019054

• **BWRVIP-97-A: Guidelines for Performing Weld Repairs to Irradiated BWR Internals**

 - BWRVIP welding guideline approved by NRC in 2011 (BWRVIP-97-A)
 - Defines generic BWR weldability boundaries where helium concentration allows conventional welding processes to be used
 - For other regions, defines plant specific methodology
 - Determine local fluence and helium concentration
 - Use threshold chart to select allowable heat input
 - Also provides guidance on available welding technologies, required inspections, Code rules, etc

• Developed improved heat input estimation techniques to establish definitive helium induced cracking threshold
• Validated welding parameters and technique
 – Determine limitation of weld process heat input and induced strain field
• Established modeling and thermal profile measurement techniques
 – Guidance for welding process development
 – Weldability prediction for highly irradiated material
Irradiated Material Welding Development

Development of Effective Weld Heat Input Equation

Effective Heat Input Equation – Conduction Limited LBW

- Contrary to theoretical HI, effective HI incorporates:
 1. Laser heat used to melt added filler metal
 2. Heat loss to atmosphere due to reflection of laser power

- **Result** – A definitive helium induced cracking threshold line

\[
Q_{eff_LBW} \left(\frac{J}{in} \right) = \frac{\mu_T P_L}{TS} - \frac{\tau (WFS) (A_{wire})}{TS}
\]
Irradiated Material Welding Development

Development of Improved Threshold Plots

• Incorporation of “Effective” Weld Heat Input

304L SS

316L SS

© 2015 Electric Power Research Institute, Inc. All rights reserved.
Irradiated Material Welding Development

Effective Versus Theoretical Weld Heat Input

- Incorporation of effective heat input provides:
 - Clear threshold for cracking and integration of GTAW and LBW data on a single plot

![Theoretical Heat Input and Effective Heat Input Graphs](image-url)
Irradiated Material Welding Development

Optimized Low Heat Input Weld Parameter Development

- Effective heat input versus helium concentration plot allows development of optimized low heat input parameters
- Finite element modeling and weld thermal history measurements
 - used to determine low heat input “buffer layer” thickness
 - requirements before switching to higher deposition rate (higher heat input) LBW parameters
Irradiated Material Welding Development: Product Overview

Welding Guideline and Technology Products

Irradiated Materials Guideline (MRP-379) - EPRI Report 3002002954

- Report based on the most recent He generation evaluations and welding data
 - Includes generic weldability plots for PWRs based on distance from He thresholds.
- Thresholds defined:
 - At “very low” He, consideration of irradiation effects is unnecessary
 - At “low” He, GTAW can be used
 - At “moderate” He, low heat input laser welding is necessary
 - At “high” He, welding with conventional techniques cannot be performed
- Recent data evaluation provides basis for revised Code Case and guidance for development of advanced welding methods

- An additional revision to BWRVIP-97-A will be required to include most recent He generation evaluations and welding data
Irradiated Material Welding Development: Product Overview

MRP Welding Guidelines – Example Tabulated Data (Numbers Omitted)

<table>
<thead>
<tr>
<th>Location</th>
<th>20 wppm B</th>
<th>50 wppm B</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>40-yr</td>
<td>60-yr</td>
</tr>
<tr>
<td>Core Centerline</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Core Periphery</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Core Barrel ID</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Core Barrel OD</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>RPV Surface ID [1]</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>0.01 appm He</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Core Centerline</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Core Periphery</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Core Barrel ID</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Core Barrel OD</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>RPV Surface ID</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>0.1 appm He</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Core Centerline</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Core Periphery</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Core Barrel ID</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Core Barrel OD</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>RPV Surface ID</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1.0 appm He</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Core Centerline</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Core Periphery</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Core Barrel ID</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Core Barrel OD</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>RPV Surface ID</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>10 appm He</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Core Centerline</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Core Periphery</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Core Barrel ID</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Core Barrel OD</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>RPV Surface ID</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

[1] RPV Surface ID may refer to Reactor Pressure Vessel Surface ID.
ASME request for Clarification Welding Irradiated Material Assessment - Summary

• Wording inconsistencies in pertinent ASME Code Sections needs to be addressed

• ASME Members of Working Group Welding & Special Repair Processes requested that EPRI help provide guidance on the subject.
 1. Areas where irradiation is an issue with respect to repair being made on the RPV and Reactor Internals
 2. Helium threshold cracking level for SS, Ni-alloy, and LAS

• BWRVIP-97-A and MRP-379 both provide significant guidance on this subject for Stainless Steel in the BWR and PWR environments
 – MRP-379 document is EPRI proprietary, BWRVIP-97-A requires updating
 – A request could potentially be submitted to the MRP and BWRVIP executive committees to allow these documents to be used to aid in providing clarification for ASME code application

• An extensive literature search has also been conducted to determine the state of knowledge regarding the effects of irradiation on Ni-alloy and LAS
2014 WRTC/LTO Status Report: Key Highlights

Welding Guideline and Technology Products

- Issued November 2014 - includes updates on:
 1. Advanced welding processes development
 2. Material fabrication and characterization
 3. Hot Cell fabrication and setup
 4. Irradiated material weld test matrix – Validation Tests
 • Crack sealing/material mitigation
 • He-induced cracking
 • Modeling and validation testing for optimal parameter Ni-based and SS materials
 • Enhanced effective heat input calculation
• Fabrication of representative materials
 – Neutron irradiation plan complete for first round of materials
 • Neutron irradiation in HFIR facility at ORNL (targeted helium ranges to 30ppm)
 – Boron doped stainless steel and nickel based materials fabricated (304L, 316L) (Nickel alloy delayed (182))
 • Characterization of materials (on-going)
 • He and Boron distribution
 • Helium measurements and flux monitors measured
 – He containing Powder metallurgy material fabricated for screening evaluations
 • allow baseline processes and conditions prior to validation tests on IM
Advanced Welding Process Development

• Goal of this work is to develop a generic welding specification and validation testing of advanced weld repair processes
• Processes under investigation
 – Low force friction stir welding
 – Low force friction stir cladding
 – Low dilution laser beam welding
 – Auxiliary beam laser welding (ABSI)
• Weld process testing, setup and modeling conducted in preparation for hot cell validation tests
Advanced Welding Process Development

Modeling and In-Situ Strain Measurement Capabilities

• Establish modeling and thermal profile measurement techniques
 – Improved guidance for welding process development
 – Increased weldability of highly irradiated material
Advanced Welding Process Development

Modeling and In-Situ Strain Measurement Capabilities

- Advanced optical filtering technique being tested with DIC – may reveal more accurate strain values within closer proximity to weld fusion zone.
- Further ABSI laser weld testing/modeling using DIC and advanced video filter technique has been conducted at EPRI
Friction Stir Welding

- Solid state process. Material temperature controlled below melting temperature.
- Temperature can be held constant during the welding process.
- Homogenous joining occurs by the “stirring” of the plasticized material.
- Unlike conventional arc welding FSW eliminates risk of shock and fume exposure.
- Can be effectively operated UW
Development of a new FSW process

• The goal is to minimize the stress and heat effect to the helium containing irradiated materials, with the potential to repair at helium concentration levels much higher than today’s repairable levels
• Integrity of standard FSW of stainless steel weld (no helium) was evaluated and showed superior bonding strength and control of residual stress
• Additional FSW development and advance welding techniques completed
 – Previous work on helium containing irradiated materials clearly illustrated the challenges
 – Details are protected under invention disclosure
Friction stir welding on Helium Containing Materials made by Powder Metallurgy (Carried out at ORNL)

- New joining technology has the potential to revolutionize repair welding of irradiated metals in nuclear industry.
 - Baseline evaluation have shown significant improvements in weldability

- High quality defect free welds successfully produced on helium containing materials made by powder metallurgy at ORNL
- No bubble formation or crack observed.

Tosten et al, 2007

Arc welding (GTAW) evaluations
Irradiated Material Weldability Testing

Irradiated Material Welding Facility Development

- Hot cell fabrication for verification testing:
 - Equipped with friction stir welding (FSW)
 - Equipped with laser welding with wire feed capabilities
 - Equipped with material handling and welding manipulation equipment

- Status
 - Cell fabrication and stand complete
 - Debugging and setup planned for mid-2015
Welding Hot Cell Cubicle Equipment Integration

- Auxiliary Laser Scanner
- Primary Laser Weld Head
- Multi Axis Wire Feeder
- FSW Head
- Weld Table 2 Axes
2015/2016 Future Milestones/Schedule

<table>
<thead>
<tr>
<th>Milestone</th>
<th>Estimated Completion Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Irradiation of first sample set (304 and 316 stainless steel)</td>
<td>Completed in 2014</td>
</tr>
<tr>
<td>Mechanical and Electrical Design</td>
<td>April, 2015</td>
</tr>
<tr>
<td>Finalize fabrication of ORNL hot cell cubicle</td>
<td>August, 2015</td>
</tr>
<tr>
<td>Laser and friction stir welding of first irradiated material sample set</td>
<td>December, 2015</td>
</tr>
<tr>
<td>Irradiation of second sample set (304 & 316 stainless steel, Alloy 182)</td>
<td>December, 2015</td>
</tr>
<tr>
<td>Mechanical and metallurgical examination of first sample set welds</td>
<td>Early-2016</td>
</tr>
<tr>
<td>Laser and friction stir welding of second irradiated material sample set</td>
<td>Mid-2016</td>
</tr>
<tr>
<td>Mechanical and metallurgical examination of second sample set welds</td>
<td>End of 2016</td>
</tr>
</tbody>
</table>
Together…Shaping the Future of Electricity