Outline

• Purpose

• Background

• Harvesting Experience

• Approach to Strategic Harvesting

• Engagement with Other Stakeholders
Purpose

• Create a framework for a strategic approach to harvesting ex-plant materials to support regulatory needs associated with SLR
 – Ex-plant materials offer unique environmental exposure that cannot be entirely replicated by laboratory testing with fresh materials

• Align high priority data needs identified in SLR/LTO activities with harvesting opportunities from decommissioning plants
Background

• To date, harvesting opportunities have been limited due to few decommissioning plants
 – Zion in U.S., Zorita in Spain

• However, several U.S. plants have already shut down or are planning to do so in the near future
 – Kewaunee, SONGS, Crystal River, Vermont Yankee, Oyster Creek

• This provides a unique opportunity to plan harvesting to address the highest priority technical and regulatory issues
Harvesting Experience

• Past harvesting efforts have generally involved reactive decision-making
 – Limited opportunities to acquire ex-plant materials
 – Limited strategic planning for harvesting

• Harvesting projects with NRC involvement:
 – Reactors internal materials from Zorita
 – Concrete from Zorita
 – Neutron absorber material from Zion
 – Cables from Zion and Crystal River
Zorita Internals Research Project (ZIRP)

- **Materials Harvested:**
 - Baffle plate and core barrel weld materials

- **Scope:**
 - Mechanical testing (tensile, CGR, FT)
 - Microstructural characterization (void swelling)

- **Purpose:**
 - High-fluence (up to 50 dpa) IAD effects with representative LWR exposure conditions to
 - Support regulatory decision-making associated with SLR

- **Timeline:**
 - Initial discussions in 2006, harvesting in 2013, testing ongoing through 2016

- **Coordination:**
 - EPRI, international consortium, Studsvik, Halden
ZIRP Timeline

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Project Inception</td>
<td></td>
</tr>
<tr>
<td>Feasibility Study</td>
<td></td>
</tr>
<tr>
<td>Project Planning</td>
<td></td>
</tr>
<tr>
<td>Cutting Plans</td>
<td></td>
</tr>
<tr>
<td>Equipment Design & Manufacturing</td>
<td></td>
</tr>
<tr>
<td>On-site Preparations</td>
<td></td>
</tr>
<tr>
<td>Material Extraction</td>
<td></td>
</tr>
<tr>
<td>On-site Logistics</td>
<td></td>
</tr>
<tr>
<td>Shipping</td>
<td></td>
</tr>
<tr>
<td>Radiation and Temperature Analyses</td>
<td></td>
</tr>
<tr>
<td>Material Inspection, Inventory, Documentation</td>
<td></td>
</tr>
<tr>
<td>Materials Testing</td>
<td></td>
</tr>
<tr>
<td>Reporting</td>
<td></td>
</tr>
</tbody>
</table>
Neutron Absorbers from Zion

- **Materials Harvested:**
 - Select Boral® NAM panels from Regions 1 and 2 of the Zion SFP

- **Scope:**
 - Visual and microstructural examinations (incl. areal density)
 - Corrosion testing

- **Purpose:**
 - Identify degradation mechanisms and estimate degradation rate
 - Confirm results of in-situ areal density measurements
 - Provide confirmatory data to support regulatory decision-making

- **Timeline:**
 - Initial discussions in 2014, harvesting in 2015, testing in 2015-2016

- **Coordination:**
 - EPRI, ZionSolutions, SRNL
Concrete from Zorita (Plan)

- **Materials Harvested:**
 - Concrete from structures that are in close proximity to RPV

- **Scope:**
 - Mechanical testing (compressive, tensile, modulus of elasticity)
 - Microstructural characterization
 - Physical change

- **Purpose:**
 - High fluence in combination with temperature and humidity that are representative of LWR environmental effects on structural and shielding performance
 - Supports regulatory decision-making associated with SLR

- **Timeline:**
 - Initial discussions in 2014, harvesting in 2015, testing 2016-2018

- **Coordination:**
 - NRC, ENRESA and CSN
Cables: Zion and Crystal River

- **Materials Harvested:**
 - Low and Medium Voltage Cables
- **Scope:**
 - Condition monitoring to assess cable performance under normal operating conditions (accelerated aging) and accident conditions
- **Purpose:**
 - Cable degradation due to normal operating environment and accident conditions
 - Supports regulatory decision-making associated with SLR
- **Timeline:**
 - Initial discussions in 2012; Cable samples harvested from Zion in 2013
 - Plan is to harvest additional samples from Crystal River and Zion in 2015
 - Testing expected to be completed in 2017
- **Coordination:**
 - ORNL, Zion Solutions, NIST, EPRI
Approach: Integrated Aging Degradation
Need/Resource Interrogatory Tool

• Utilize various sources of technical information with respect to anticipated degradation in NPPs out to 80 years of operation
 – NRC, DOE, EPRI, IAEA
• Identify high-priority data needs that could be addressed through harvesting ex-plant materials
 – Focus on identifying characteristics of important systems, structures, and components (SSCs) for harvesting
• Evaluate what relevant ex-plant material from decommissioned reactors is projected to be available for potential harvesting given previously identified needs
How does one try to predict the future?

- Experts were tasked with
 - Listing passive reactor components
 - Reviewing relevant degradation mechanisms
 - Determining the degree to which the components were susceptible to these mechanisms
 - Determining confidence level in their predictions
- The PMDA panel evaluated 3863 components (2203 for PWRs, 1603 for BWRs) for their susceptibility to 16 degradation mechanisms.
 - Documented in NUREG/CR-6923
- The EMDA panels investigated issues of reactor aging beyond 60 years to identify possible knowledge gaps, and provided an expansion of scope and time
 - Documented in NUREG/CR-7153
EMDA (NUREG/CR-7153)
Source: DOE LWRS Program
(J. Busby, Overview Presentation to NESCC May 12, 2015)

- Complete characterization of demonstration of RPV sections following annealing and reirradiation
- Complete development and testing of new advanced alloy with superior degradation resistance with ARRM partners

By 2016 – Lead Plant for SLR Selected
By 2018 – First SLR License Application Submitted
By 2020 – First SLR License Approved by NRC

- Expanded Materials Degradation Assessment
- Model for transition temperature shifts in RPV steels
- Model for environmentally-assisted fatigue in LWR components
- Model for cable degradation
- Model for cast austenitic
- Predictive capability for end of useful life for cable insulation
- New or improved NDE technologies for concrete and cable
The Vision: Integrated Aging Degradation Need/Resource Interrogatory Tool
Implementation

• What might the output of this activity look like?
 – For example, the review may show there is value in acquiring CASS material around 15% delta ferrite with various dose ranges (<0.08 dpa, 1–3 dpa, and >5 dpa)

• Once that need is identified, this activity would identify what SSCs might be the best candidates for harvesting
 – For example, perhaps lower support columns would be identified as the ideal SSC to address the CASS data need

• As decommissioning plants announce their plans, there is a clear list of SSCs and their characteristics (metallurgy, temperature, fluence, etc.) that would be desired to address the data need
Coordination with EPRI and DOE

- NRC has memorandums of understanding with EPRI LTO and DOE LWRS covering exchange of information related to SLR and welcomes the involvement of other stakeholders.
Stakeholder Engagement

• IAEA CRP: Evaluation of Structures and Components Material Properties Utilizing Actual Aged Materials Removed from Decommissioned Reactors for Safe LTO.

• Conduct public workshops to further refine the concept of useful database of research objectives for ex-plant materials

• NRC welcomes collaboration under current EPRI/LTO and DOE/LWRS MOUs.
Acknowledgements

• Robert Tregoning, RES/DE
• Eric Focht, RES/DE
• Darrell Murdock, RES/DE
• Mita Sircar, RES/DE
Acronyms

- ARRM – advanced radiation resistant materials
- CGR - crack growth rate
- CRP – coordinated research project (IAEA)
- CSN – Spanish regulator
- EMDA- expanded materials degradation assessment
- ENRESA – Spanish decommissioning authority
- FT – fracture toughness
- GALL – Generic Aging Lessons Learned
- IAD – irradiation-assisted degradation
- IGALL – international GALL
- LTO – long-term sustainability
- LWRS – LWR Sustainability
- MOU – Memorandum of Understanding
- NAM – neutron absorbing material
- NIST – National Institute of Standards & Technology
- NPAR – nuclear plant aging research
- PMDA – Proactive Materials Degradation Assessment
- PTS – pressurized thermal shock
- RPV – reactor pressure vessel
- SFP- spent fuel pool
- SLR – subsequent license renewal
- SLRGDs – subsequent license renewal guidance documents
- SRP-LR standard review plan for license renewal